Comparing ROC curves derived from regression models.

نویسندگان

  • Venkatraman E Seshan
  • Mithat Gönen
  • Colin B Begg
چکیده

In constructing predictive models, investigators frequently assess the incremental value of a predictive marker by comparing the ROC curve generated from the predictive model including the new marker with the ROC curve from the model excluding the new marker. Many commentators have noticed empirically that a test of the two ROC areas often produces a non-significant result when a corresponding Wald test from the underlying regression model is significant. A recent article showed using simulations that the widely used ROC area test produces exceptionally conservative test size and extremely low power. In this article, we demonstrate that both the test statistic and its estimated variance are seriously biased when predictions from nested regression models are used as data inputs for the test, and we examine in detail the reasons for these problems. Although it is possible to create a test reference distribution by resampling that removes these biases, Wald or likelihood ratio tests remain the preferred approach for testing the incremental contribution of a new marker.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing ANN and CART to Model Multiple Land Use Changes: A Case Study of Sari and Ghaem-Shahr Cities in Iran

Most of the land use change modelers have used to model binary land use change rather than multiple land use changes. As a first objective of this study, we compared two well-known LUC models, called classification and regression tree (CART) and artificial neural network (ANN) from two groups of data mining tools, global parametric and local non-parametric models, to model multiple LUCs. The ca...

متن کامل

Comparison of correlated receiver operating characteristic curves derived from repeated diagnostic test data.

RATIONAL AND OBJECTIVES It is common to administer the same diagnostic test more than once to the same set of patients. The purpose of this study was to develop two statistical methods for estimating and comparing correlated receiver operating characteristic (ROC) curves for data derived from repeated diagnostic tests. MATERIAL AND METHODS Parametric and semiparametric transformation models w...

متن کامل

ROC curve regression analysis: the use of ordinal regression models for diagnostic test assessment.

Diagnostic tests commonly are characterized by their true positive (sensitivity) and true negative (specificity) classification rates, which rely on a single decision threshold to classify a test result as positive. A more complete description of test accuracy is given by the receiver operating characteristic (ROC) curve, a graph of the false positive and true positive rates obtained as the dec...

متن کامل

Semiparametric Inferential Procedures for Comparing Multivariate Roc Curves with Interaction Terms

Multivariate ROC curve models that include an interaction term between biomarker type and false positive rate are important in comparative biomarker studies, because such interaction allows ROC curves of different biomarkers to cross each other. However, there has been limited work in drawing inference for comparing multivariate ROC curves, especially when interaction terms are present. In this...

متن کامل

Predicting postoperative vomiting among orthopedic patients receiving patient-controlled epidural analgesia using SVM and LR

Patient-controlled epidural analgesia (PCEA) has been applied to reduce postoperative pain in orthopedic surgical patients. Unfortunately, PCEA is occasionally accompanied by nausea and vomiting. The logistic regression (LR) model is widely used to predict vomiting, and recently support vector machines (SVM), a supervised machine learning method, has been used for classification and prediction....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 32 9  شماره 

صفحات  -

تاریخ انتشار 2013